Old School Development, New School Development
Once upon a time, computers cost more than airliners. In the early days, only companies with an average twenty-five billion dollars of revenue (in today’s dollars) could afford to even consider them. But those companies tended to be in markets like finance that were, frankly, risk adverse to the point of paranoia. Mistakes of any kind in the delivered software frightened the bejeebers out of decision-makers and cost the computer companies millions in extra effort necessary to restore confidence.
But there were reasons to avoid mistakes long before the computer and its custom software was delivered. The simple cost of owning and operating a mainframe was so high – even for the companies that built them – that it was cheaper to employ teams of highly-paid professionals to spend months documenting and writing specifications for every little detail of client’s business needs on legal pads and graph paper than it was to detect and fix errors once they had gotten from the graph paper to the punch cards to the compiler to the executable code.

As hard as that is to believe today, going to herculean efforts to design errors out of the program before it was coded was once a time- and money-saving approach.
Eventually, with mini-computers and multiprocessing capabilities, the cost of computer ownership dropped. With microcomputers, it became insignificant. But the mentality of extensive preplanning and top-down control remained, especially in companies that had started out with mainframes or who focused on multi-billion-dollar clients.

In the meantime, product development organizations of all kinds were beginning to realize things like:

· Designers and developers are not interchangeable, like assembly line workers.
· The best designers and developers work better when their input is considered.

· Building real, empowered teams does more to motivate high performance levels than HR-based rewards or disciplines.
· Planning everything out before the project even starts ensures obsolescence in the finished product; it also keeps developers from making better-informed choices as the project progresses.
· Development projects meet customers’ real and perceived needs better if the customers are consulted throughout the development.

· Paying attention to the flow of “work items” through the project’s development can reduce bottlenecks and inefficiencies.

To be fair, not every company in product development learned all of these lessons at the same time. For example, the first lesson – that developers are not interchangeable, was first spelled out by a former IBM mainframe software development manager – Fredrick P. Brooks, who also first proposed “pair programming” as a solution to several kinds of software development problems.
In Japan, meantime, companies like Toyota were applying “empowered team” principles, as well as processes inspired by “just-in-time” automobile manufacturing to product design and development.
As project managers and management consultants applied the bits and pieces they were learning, the discovered more and more efficiencies. Several of Brooks’ principles, including pair programming, were incorporated into what came to be called “Extreme Programming.” A number of Just-in-Time principles and processes found their way into “Lean Programming” and “Kan Ban” software development principles.
Several of the new approaches also depended on Japanese-style “empowered teams.” Management consultant Jeff Sutherland further developed the empowered team principle into what he called “Scrum,” adding both original ideas and helpful parts of other processes such as Kan Ban-inspired “task boards.”
Management consultants realized that most of the movements away from “old-school” software development shared a number of common principles. They also realized that attempting to evolve toward a single standard (the way, say, electronics and computer networking companies do) was out of the question. After all, the “experts” who were making a fortune in book sales and consulting fees were not about to give up claiming that their approach was unique and superior. So they decided to invent an umbrella term that would include any of these new approaches that met certain criteria.

“Agile,” as they called it, had to represent more than just a rejection of the old-school, mainframe environment-based, top-down, preplanned approach to software development. In 2001, seventeen software development professionals and project management consultants decided on a set of values they could all commit to, and called it the “Agile Manifesto.” According to the manifesto, any Agile methodology would value:
· Individuals and interactions over processes and tools – For example

· Trust your qualified people to do their jobs without micromanagement and second-guessing.
· Recognize that their experience on the project makes them valuable, and don’t imagine that someone else with the same job description or college degree could replace them or get up to speed without significant effort.

· Encourage frequent interaction within the team and with stakeholders.
· Working software over comprehensive documentation – Having a small fraction of the project done and tested so you can get customer feedback is worth more than having the entire project planned to the last detail.
· Customer collaboration over contract negotiation – Working with the customer as the project progresses to make certain you’re delivering what the customer wants is better than getting a grocery list of functions at the beginning of the project, then turning over something that doesn’t satisfy the customer at all.
· Responding to change over following a plan – Don’t try to make every possible decision up front – you’ll wind up changing things anyway as you get into it, and the end result will be better for it.
In addition the signers of the manifesto listed twelve practices and principles that they felt would support those values in any software development environment (from AgileAlliance.org):

1. Our highest priority is to satisfy the customer through early and continuous delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes harness change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity--the art of maximizing the amount of work not done--is essential.

11. The best architectures, requirements, and designs emerge from self-organizing teams.

12. At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior accordingly
