The Birth of Agile
Once upon a time, computers cost more than airliners. In the early days, only companies with more than twenty-five billion dollars of revenue (in today’s dollars) could afford to even consider them. But those companies tended to be in markets like finance that were, frankly, risk adverse to the point of paranoia. Mistakes of any kind in the delivered software frightened the bejeebers out of decision-makers and could cost the computer companies millions in extra effort necessary to restore confidence.
But there were reasons to avoid mistakes long before the computer and its custom software was delivered. The cost of owning and operating a mainframe was so high – even for the companies that built them – that it was cheaper to employ teams of highly-paid professionals to spend months documenting and writing specifications for every little detail of the client’s business needs on legal pads and converting those requirements to code on graph paper than it was to detect and fix errors once they had gotten from the graph paper to the punch cards to the compiler to the executable code.

As hard as that is to believe today, going to herculean efforts to design errors out of the program before it was coded was once a time- and money-saving approach.
Eventually, with mini-computers and multiprocessing capabilities, the cost of computer ownership dropped. With microcomputers, it became insignificant. But the mentality of extensive preplanning and top-down control remained, especially in companies that had started out with mainframes or which focused on multi-billion-dollar clients.

Emerging From the Mainframe Mindset

In the meantime, product development organizations of all kinds were beginning to realize things like:

· Developers are not interchangeable.
· The best designers and developers work better when their input is considered.

· Building real, empowered teams does more to motivate performance than HR-based rewards or disciplines.
· Planning everything out before the project even starts ensures obsolescence in the finished product; it also keeps developers from making better-informed choices as the project progresses.
· Projects meet customers’ real and perceived needs better if the customers are consulted throughout the development.

· Paying attention to the flow of work through the project’s development can reduce bottlenecks and inefficiencies.

To be fair, not every company in product development learned all of these lessons at the same time. For example, the first lesson – that developers are not interchangeable - was first spelled out by a former IBM mainframe software development manager – Fredrick P. Brooks, who also first proposed “pair programming” as a solution to several kinds of software development problems.
In Japan, meantime, companies like Toyota who had long used “empowered teams” began applying “just-in-time” manufacturing principles to “higher functions” like product design and development.
New Frameworks for Managing Design and Development

As project managers and management consultants applied the bits and pieces they were learning, they discovered more and more efficiencies. And a family of new approaches to product development, especially software development, emerged. For example:

· Several of Brooks’ principles, such as “pair programming,” were incorporated into what came to be called “Extreme Programming.”
· A number of Just-in-Time principles and processes found their way into “Lean Programming” and “Kan Ban” software development principles.
Most of the new approaches also depended on Japanese-style “empowered teams.” Management consultant Jeff Sutherland further developed the empowered team principle into what he called “Scrum,” adding both original ideas and helpful parts of other processes such as Kan Ban-inspired “task boards.”
Coming Together, Sort Of
Project management consultants realized that most of the movements away from “old-school” software development shared a number of common principles. They also realized that attempting to evolve toward a single standard (the way, say, electronics and computer networking companies do) was out of the question. After all, no expert who was making a fortune in book sales and consulting fees was about to give up claiming that his or her approach was unique and superior to all the other approaches.

So most of the leading project management consultants of the 1990s “agreed to disagree.” But they also recognized the need to invent an umbrella term for the family of new approaches that had emerged. They called it “Agile.”

Accentuating the Positive

That said, the term Agile had to represent more than just a negative rejection of the old-school, mainframe environment-based, top-down, preplanned approach to software development. In 2001, seventeen software development professionals and project management consultants decided on a set of positive values they could all commit to, and called it the “Agile Manifesto.” According to the manifesto, any Agile methodology would value:
· Individuals and interactions over processes and tools – For example

· Trust your qualified people to do their jobs without micromanagement and second-guessing.
· Recognize that their experience on the project makes them valuable, and don’t imagine that someone else with the same job description or college degree could replace them or get up to speed without significant effort.

· Encourage frequent interaction within the team and with stakeholders.
· Working software over comprehensive documentation – Having a small fraction of the project done and tested so you can get customer feedback is worth more than having the entire project planned to the last detail.
· Customer collaboration over contract negotiation – Working with the customer as the project progresses to make certain you’re delivering what the customer wants is better than getting a grocery list of functions at the beginning of the project, then turning over something at the end that doesn’t satisfy the customer at all.
· Responding to change over following a plan – Don’t try to make every possible decision up front – you’ll wind up changing things anyway as you get into it, and your people will make better decisions when they’re in the middle of the project than they might have at the beginning.
Sharing More Than Four Bullet Points
The truth is that each Agile approach emphasizes some aspect(s) of the above list more than others. Also, the list doesn’t formalize how Agile practitioners should implement each of the above principles.

However, the approaches that have come to be called Agile have experienced a certain amount of “cross-fertilization.” Today several Agile approaches share such practices as:

· Use of prioritized “user stories” to represent customer requirements.

· Use of a board that uses columns to show the progress of individual user stories through the process.

· Small teams that are relatively autonomous.

· Daily “standup meetings” to facilate communication within each team.

· Short development cycles which address only the number and size of user stories that can be handled during the cycle.
· Frequent releases, pre-planned customer feedback opportunities, and other means to make sure the project is going the right direction.
There’s Still a Big Picture

Today, many development shops settle on one flavor of Agile or another at the management level, and the developers’ first encounter with Agile is specific to Scrum, Kan Ban, or some other approach. So, in effect, they’re seeing Agile through the “small end of the telescope.”
But as more and more organizations become familiar with all the options and tools that the various Agile approaches have to offer, there is likely to be a growing “cafeteria” movement, in which development organizations use the parts that work for them and ignore the parts that don’t.

And if you think about it, that’s an Agile approach, too.

