What Were the Old-School Software Developers Thinking?
Today’s software development mangers enjoy vilifying the people who invented computers and ran the world’s businesses on them for decades. What were they thinking with their careful preplanning, their long development cycles, and their top-down supervision?

If I could take you back forty-odd years in time and show you how we did things, you would cringe. Remember, we were computerizing fortune 500 businesses that had never been computerized before, and many of which didn’t even really have a “handle” on their own business processes.

Business analysts would spend months figuring out exactly how a client’s business functioned. The analysts – who were trained in business and business processes, not in computers – would figure out both the client’s real business needs and the client’s perceived needs, which were never the same. We knew we had to solve both or it would come back to bite us.
Often the analysts discovered huge inefficiencies within the existing operations and were able to make suggestions that improved corporate efficiency before the computers even shipped.

Then the business analyst would cloister with system architects and other high priests of the mainframe computer world. They would spend several more months figuring out the best approach to solve the client’s problems. The tech gurus would draw up a “functional specification” listing every little thing the system would have to do to meet the client’s needs, and the business analyst would review it carefully to make certain nothing important was left out. In one relatively small project I worked, the functional specification was nearly 10,000 pages long, so this was no small feat.

Then the people who were destined to head each development team would convert the functional specification into an “implementation specification” which described, not only the functions that needed to happen, but how they should be coded to maintain system integrity and maintainability. Again, a 10,000 page document might be the result.
By the way, keep in mind that this was all before Word or WordPerfect or Wordstar or desktop computers of any kind. It was a revolution when the documents could advance from being re-typed each time they were revised to being stored on 8-inch floppies on special-purpose business machines, each of which would have cost the equivalent of an average programmer’s annual salary.

By now, as you can guess, the computer company might have spent something like 18 months planning the client’s solution, involving six or more highly-paid analysts and another half-dozen clerical and support personnel, and not one line of code had been written. It would be another year between the time the coders were “turned loose” and beta testing began, and at least six months beyond that before signoff. At which time it would almost always become evident that the solution we delivered was three years behind what the client needed when we started the process, and maintenance release planning would start virtually the next day.
Let’s assume that the business analyst and architects went on to other projects when the coding started, but somewhere between fifteen and thirty coders and supervisors were brought on board. I just did the math. In today’s dollars, the company would have spent over $17,000,000 in salaries and overhead (not counting computer expense) just to release the first version of the client solution.

What were we thinking?

Well, for one thing we were thinking that when our software convinced the client to buy a mainframe and hundreds of terminals, dozens of line printers, and lots of other accessories, the payoff would be ten times what we had spent on R&D. Not to mention millions more in maintenance contracts as long as they kept using our stuff. Or the fact that, once we had the core systems developed, we could adapt them to other clients and even other industries far more efficiently than starting from scratch. If those figures sound insane, just remember that we were targeting companies whose average revenue revenue (in today’s dollars) was twenty-six billion dollars a year, and whose operations were vastly simplified by the automation we offered.
But the payoff wasn’t the reason for our careful planning, with all of those signoffs and dotted I’s and crossed T’s. The cost of programming and testing was. In 1983, our division determined that the mainframe computer were using as a development platform needed another meg of memory. It cost us over a million dollars. For one meg. You see the problem?

In fact the cost of keeping that patched-up old mainframe online was nearly half of all our expenses combined. And for a lot of functions (like compiling), we had only “one seat.” So each of our thirty programmers were lucky if they got more than an hour a week of actual access to the computer. We coded on paper (generally in COBOL), typed our code into a punch-card machine, dropped the punch-cards into a reader that was connected to the computer, got the computer to print out the contents of our card deck so we could cross-check it against our hand-written code, then dropped the punch-cards into the reader again and told the computer to compile. Many shops had people working all night serially compiling card decks so the programmers could check their printouts for errors when they came in the next morning.
Every little error could cost a programmer a day’s work, because he or she would have to replace whichever punch cards had caused the problem and wait until the program could be recompiled again – sometimes only to discover than a new error three lines down was now being detected and another day’s delay was in store.
Do you see why the analysts and other gurus were so careful to plan every little thing in advance? We couldn’t afford errors, even little ones, much less design errors caused by some hotshot taking shortcuts or writing “spaghetti code” that no one could debug. It cost so much to program anything at all that we did everything we could to design mistakes out of the code before we even started coding.
And let’s face it – industry leaders like IBM and NCR were always all about control. But that sort of attitude made them the ideal choice for rich clients with huge security issues. Yes, you paid too much and it took too long, but when you finally had it working in-house, it would be built like a tank.

Eventually, with mini-computers and multiprocessing capabilities, the cost of a “seat” on the computer console dropped. With microcomputers, it became insignificant. But the mentality of exerting absolute top-down control remained, especially in companies that had started out with mainframes or who focused on multi-billion-dollar clients.

When the cost of microcomputers became so low that there was one at every programmer’s desk, there was a sort of “Wild West” era, in which the quality and maintainability of the code didn’t matter, as long as it did what it was supposed to do. “Structured” programming approaches helped, as did adoption of middleware that standardized things from device drivers to certain kinds of mathematical calculations.
With today’s “development environments,” it’s harder to write code that nobody else can debug (although it’s still possible). It’s also a lot easier for the original coder to test and fix mistakes before releasing his or her code. In fact, if the programmers are working closely with the presumed users, it’s possible to identify a requirement, code the feature or update, test the code, demo the code, and fix bugs or incorporate recommend changes in less time that it took the typists supporting the first-generation business analysts to type up all the paperwork required to support a single requirement in the first place.
So the need for all of those top-down controls and signoffs seems to have evaporated. But we still have to make certain that our technical people are responsive to our business needs, and wherever there are people and projects, there will need to be some form of management and project management.
